
Introduction

This report describes the research effort to demonstrate the integration of a data sharing

technology, Rin£ Buffered Network Bus, in development by Dryden Flight Research Center,

with an engine simulation application, the Java Gas Turbine Simulator, in development at

the University of Toledo under a grant from the Glenn Research Center. The objective of

this task was to examine the application of the RBNB technologies as a key component in

the data sharing, health monitoring, and system wide modeling elements of the NASA

Aviation Safety Program (AvSP) [Golding, 1997].

System-wide monitoring and modeling of aircraft and air safety systems will require access to

all data sources which are relative factors when monitoring or modeling the national airspace

such as radar, weather, aircraft performance, engine performance, schedule and planning,

airport configuration, flight operations, etc. The data sharing portion of the overall AvSP

program is responsible for providing the hardware and software architecture to access and

distribute data, including real-time flight operations data, among all of the AvSP elements.

The integration of an engine code capable of numerically "flying" through recorded flight

paths and weather data using a software tool that allows for distributed access of data to this

engine code demonstrates initial steps toward building a system capable of monitoring and

modeling the National Airspace.

Overview

The current prototype allows users to perform a gas turbine simulation, store the execution

results on the Ring Buffer Network Bus (RBNB), and access and display the results from

distributed machines across a network. The topology of the integrated system is shown in

Figure 1. There are three main components to the system: the Java Gas Turbine Simulator,

the Ring Buffer Network Bus, and a Java-based Plotting application/applet.

The Java Gas Turbine Simulator (JGTS) [Reed and Afjeh, 1997] is an object-oriented,

interactive, graphical, numerical gas turbine simulator written entirely in Java r'_ [Arnold

and Gosling, 1996]. It couples a graphical user interface, developed using the Java

Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas

turbine analysis method, to provide an environment which allows the quick, efficient

construction and analysis of arbitrary gas turbine systems. The combined package

provides analytical, graphical and data management tools which allow the user to

construct and control dynamic gas turbine simulations by manipulating graphical objects

on the computer display screen. The Java language and environment permit user to

easily access and run the simulator from a variety of heterogeneous computer platforms

including PC's, Macintosh, and Unix machines.

The RBNB DataTurbine is a software network data server that provides widely

distributed users simultaneous access to real-time information [Freudinger and Miller,

1997]. The RBNB acts as an intermediary between dissimilar data monitoring and

analysis algorithms and can be treated as a "black box" to which data is sent and

received. It uses Java and standard Internet protocols.
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The Java-based plotting application/applet is a stand-alone version of the graphing tool

available in the JGTS. The application/applet is used to display the results of the gas
turbine simulation.
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Figure 1: Topology of JGTS-RBNB data sharing system.



How it works

Gas turbine models are developed and simulated by the user in the JGTS. These models are

represented as component objects which are instantiated and connected by the user to form

an engine model (see Figure 2). Once an engine model is constructed, model-specific

parameters (e.g., temperature, mass flow rate, etc.) are entered into each component. The

user can select an appropriate numerical method from a library of numerical solvers to carry

out the simulation. At each converged time-step during the simulation, the data describing

the component operations in the engine (i.e., the various component parameters) are sent to

the RbnbWriteMgr object. This singleton object [Gamma et al, 1995] provides a global

point of access to the RBNB, and also serves as a temporary database for storing component

parameters during the simulation. At the successful conclusion of the simulation, this data is
encoded and transmitted across a network to the RBNB Server where it is stored. Users

wishing to access the simulation results can use the Plotting application/applet from

networked workstations to connect to the RBNB server. When started, the singleton

RbnbReadMgr object accesses and decodes the simulation data previously stored on the

RBNB server. This data is passed to the RbnbPlotController which stores the data in a
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Figure 2: Interaction diagram of main components in data sharing system.



simple internal database, and builds the RbnbPlotControllerFrame user interface. The

RbnbPlotControllerFrame provides graphical lists of the engine components in the

simulation and their parameters. Selection of a parameter from the list creates a graphical

PiotVCindow of the parameter to be displayed. For example, Fig. 1 shows PlotWindows for

enthalpy, temperature and spool speed parameters.

Simulation Execution

The first step in running the simulation is to start the RBNB Server. The RBNB Server is a

Java application, and is started using the command:

java rbnbServer &

This starts up the Java Virtual Machine, executes the rbnbServer.class file, and places the

server in the background so that it runs continuously. By default, the RBNB listens to TCP/

IP port 3333. Other ports can be specified at startup using the -s command-line argument.

For example,

java rbnbServer -s 7777 &

will instruct the RBNB to listen to TCP/IP Port 7777 for connecting applications.

Once the RbnbServer is running, the user can execute the JGTS engine simulation. It is

assumed that a valid JGTS engine model is available; the prototype uses a model of the Pratt

& Whitney F100 engine, which was developed previously [Reed and Afjeh, 1997]. The
simulation is started from with the command:

java engine-model -class rbnb-i oca tion :port

The engine-model-class argument defines the Java class file containing the JGTS engine

model. The rbnb-loca_ion:port argument is the TCP/IP address and port of the Rbnb

Server where the simulation results will be stored. For example, if the JGTS engine model is

contained in the file jnpss.engine.NPSS and the RBNB is running on

mime2, eng.utoledo, edu using port 7777, then the user would start the simulation with
the command:

java jnpss.engine.NPSS mime2.eng.utoledo.edu:7777
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Simulation Initialization

When the engine simulation model is executed, the JGTS simulation system performs a

series of initialization steps. One of these steps is the initialization of the RbnbUrite24gr

singleton object. During this simulation initialization, the NpssSystera object (which is the

controller in the JGTS system) sends the initialize() message to the Rbr_bWriteMgr

singleton (see interaction diagram, Fig. 3). The initialize() method queries the

NpssSystera object to determine the engine components in the system and uses this

information to construct the componentNaraes Vector (see Table 1). As its name implies,

componentNaraes is a collection of the names of the components currently in the engine

model.

componentName 1-->

componentName2-->

componentName3-->

componentName4-->

Table 1: componentNames Vector example
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Figure 3: Object interaction diagram for initialization.



The initialize () method also sends the message getGraphParameters () to each

component in the engine model to identifythe parameters (e.g.,pressure, temperature,

mass flow rate,etc.) for each component. Using thisinformation, RbnbWriteMgr creates

the parameterNamesTable Hashtab[e to identifythe names of the parameters for each

component. The Hashtable key isthe componentName, and the value isa Vector containing

the names (Strings)of the parameters for that component. The names of the parameters are

added to the Hashtable at thistime. Note that each component type (e.g,Compressor,

MixingVolume, Turbine, etc.),willhave a specificnumber of parameters; these may not be

equal. An example of the parameterNamesTable structureisshown in Table 2.

Table 2: RbnbWriteMgr parameterNamesTable example

CornponentName-- >

param Value l -->

param Value2 -->

param Value3-- >

param Value4-- >

param Value5-- >

param ValueN-- >

ENVIRONMENT

enthalpy

pressure

temperature

altitude

specificHeat

r
machNumber

FAN

enthalpy

HPC MV 13 ...

enthalpy volume

pressure pressure pressure

temperature temperature temperature

massFlowRate massFlowRate deltaMass

specificHeat specificHeat specificHeat

r r r

energyFlux energyFlux energyFlux

Also created in RbnbWriteMgr initialize() method is the paramValuesTable

Hashtable. In this Hashtable, the key is the component name, the value is a Vector

containing the time-step and parameter value sets (see below). At this time, the Vectors are

empty.

Data Generation

During a transient engine simulation, the numerical solver in the JGTS attempts to force the

engine model to convergence at each time step. When this occurs, the solver invokes the

NpssSystem object's updateGraphs ( ) method (see Figure 4). This method gets the single

instance of the RbnbWriteIVIgr class, and invokes it's updateData ( ) method, which invokes

it's own getDataFroraNpssSystem() method. In this method, each component in the

engine model is sent the getGraphParameters() message which returns a Hashtable

containing the names of the parameters and their current values. This data is then stored in

the paramValuesTable Hashtable in RbnbWriteMgr.

The paramValuesTable Hashtable key is a String identifying the component name and the

value is a Vector. The Vector structure is shown in Table 3. As the simulation progresses,

parameter values at each time step are added to each Vector corresponding to the

appropriate component name. At the conclusion of the simulation, the paramValuesTable

will be completely filled with parameter values at each time step for each component in the

simulation (see Table 4, for example).
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Sending the Data to the RBNB

If the transient simulation completes successfully, the NpssSytem object calls

RbrrbWriteMgr. updateRBNB ( ) which calls its own putDataOnRbnb ( ) method (see Figure

5). This method establishes a connection to the RBNB, creates an RBNB Map in which to

store the data, and proceeds to loop through each of the objects in the componentNames

Vector. For each entry in the Vector, an RBNB Channel object is created to hold the

component's simulation data. A Channel object stores data in the form of a byte array. To

convert the String, int, and double values into bytes, and put them into an array.

RbnbWriteMgr uses the encodeDataArray( ) to create the Channel's byte data array. Here

is the method code (without exception handling):

NpssSystem RbnbWriteMgr Rbnb Server

I I I

Simulation has completed successfully

1
updateRBNBO

_ putDataOnRbnb0

_ encodeDataArray0

putMap0

Figure 5: Object interaction diagram for sending data to the RBNB.



componentName

time Value l

param Value l

paramValue2

param ValueN

timeValue2

param Value l

paramValue2

param ValueN

lr
time ValueM

pararn Value l

param Value2

param ValueN

Table 3: RbnbWriteMgr paramValuesTable description

String

Double

Double

Double

The component name.

The first simulation time-step value for the following parameter values.

The first component parameter's (paramNamel) value.

The second component parameter's (paramName2) value.

Double

Double

Double

Double

The "n"th component parameter's (paramNameN) value.

The second simulation time-step value for the following parameter values.

The first component parameter's (paramNamel) value.

The second component parameter's (paramName2) value.

Double The "n"th component parameter's (paramNameN) value.

Double

Double

The "m"th simulation time-step value for the following parameter values.

The first component parameter's (paramNamel) value.

The second component parameter's (paramName2) value.

Double The "n"th component parameter's (paramNameN) value.



Table 4: RbnbWriteMgr paramValuesTable example

Compressor Fan MV 13 HPC

time Value 1 -- >

param Value 1 -- >

param Value2 -->

param ValueN -->

time Value2 -- >

paramValue l -->

param Value2 -- >

paramValueN -->

time ValueM -- >

param Value 1 -- >

param Value2 -->

pa ram ValueN -- >

0.1 0.1

100.0 55.3

545.9 89890.0

5.6343 222.33

0.2 0.2

101.3 56.7

544.3 -22200.0

7.2323

lr

1.0

236.3 89.4

6854.4 0.2323

6.34343 299.44

266.343

Ir

1.0

MV3

74545.3

0.2

453453.0

35.674

88234.2 10.3343 723356.2

Ir
1.0 1.0 1.0

234555.2 678.9643 10223.3

653.3 2343.3 233.3

93993.3 11.1112 7234.3

8.3434 844343.3

0.2 0.5

456.9933 567.3

26423.67 2554.7

0.1 0.1 0.1

453453.0 454.0999 555.33

33.0 23234.5 2323.5



pri_te byte[] encodeDataArray(String ccrnponentName) throws Exception {

ByteArrayOutputStream baos = new ByteArrayOutputStream( );

ObjectOutputStream oos : new 0bjectOutputStream(baos) ;

// Write component name

oos .writeObj ect (ccmloonentName) ;

// Write the number of parameters to data array

Integer il = (Integer) numParametersTable.get (ccrnponentName) ;

int numOfParameters = il. intValue ();

oos .writeInt (numOfParameters) ;

// Loop through vl and copy the names of the parameters to the ObjectOutputStream

Vector vl = (Vector)par_able.get(ccrnponentName) ;

for (int k : 0; k < vl.size(); k++) (

String s = (String)vl.elementAt(k);

oos .writeObj ect (s) ;

]

// Get the vector for the paramValuesTable and copy the parameter values

// to the Object0utputStream

Vector v2 = (Vector)paramValuesTable .get (ccr_oonent/qame) ;

for (int m = 0; m < v2.size(); m++) (

Double dl = (Double)v2.elementAt(m) ;

double d2 = dl.doubleValue() ;

cos. writeDouble (d2) ;

}

// Get contents of ObjectOutputStream as byte array

cos. flush () ;

byte [] data = baos. toByteArray () ;

// Release tb_ ObjectOutputStream resources

cos. close () ;

return data;

}

The returned byte array is stored into the appropriate Channel object which is then

registered with the RBNB Map object created previously. This process is repeated for each
of the entries in the componentNames Vector, after which, the Map object is sent to the

RBNB.

Data Channel Structure

For the prototype, we used a single RBNB data Channel object to store data for each

component in the engine model. The data format for the channel is shown in Table 5. The

data is arranged as a vector of Java String, int and double entries.

component Name

The default Channel data format, shown in Table 5, starts with a String representing the

Component's name. This String is also used as the name of the RBNB Channel, so that

the names of the components can be identified from the RBNB Channel Map.
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Table 5: Format of data in Channel

component Name

numOfParams

paramName 1

paramName2

pa ramNameN

time Value l

param Value l

param Value2

pa ram ValueN

time Value2

param Value l

paramValue2

param ValueN

time ValueM

param Value l

param Value2

param ValueN

String

int

String

String

String

String

String

double

double

double

double

double

double

double

double

double

double

double

double

The component name.

The number of component parameters.

The name of the first component parameter

The name of the second component parameter.

The name of the "n"th component parameter.

The first simulation time-step value for the following parameter values.

The first component parameter's (paramNamel) value.

The second component parameter's (paramName2) value.

The "n"th component parameter's (paramNameN) value.

The second simulation time-step value for the following parameter values.

The first component parameter's (paramNamel) value.

The second component parameter's (paramName2) value.

The "n"th component parameter's (paramNameAD value.

double

double

double

double

double

double

The "m"th simulation time-step value for the following parameter values.

The first component parameter's (paramNamel) value.

The second component parameter's (paramName2) value.

The "n"th component parameter's (paramNameN) value.
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numO fParams

The next entry in the Channel is the number of parameters which this component is

storing. Parameters, such as temperature, pressure, mass flow rate, are varied and dependent

on the type of engine model being used. Because each component may have different

numbers of parameters, this value is needed to for encoding/decoding the data. The list of

component parameters are automatically obtained by Rbr_WriteMgr before the simulation

begins.

paramNamel, paramName2 .... , paramName_N

Each parameter's name is defined by a String which is added as a separate entry to the data

channel.

time, paramValuel, paramValue2 ..... paramValueN

After the parameter names are added, the data resultsform the simulation are added. The

data is defined by a time value and then values for each parameter at that time step. First the

time-step term is added, then the values for each parameter at that time-step is added. Note,

the order of parameter value addition is the same as the order of parameter names.

Additional time-step and parameter values entries are added until the data is exhausted.

Extracting and Plotting Simulation Data

Multiple users residing at different locations on a network may access and display the

simulation results stored on the RBNB using the prototype systems's Plotting tool. The

Plotting tool is designed to be run either as a Java applet or a Java application. In the case of

an applet, the tool is run in the context of a Java-enabled browser such as Netscape

Navigator TM or Hot Java. The applet is embedded in an HTML page which is loaded and

executed automatically. When run as a application, the Plotting tool is started from the
command line with the command:

java RbnbPlotController rbnb-location:port

Where the rbnb-location:port argument is the TCP/IP address and port of the Rbnb

Server holding the simulation results. For example, to access and display the results stored in

the RBNB Server running on rrd_me2, eng.utoledo, edu using port 7777, we would have:

java RbnbPlotController mime2.eng.utoledo.edu:7777

When the Plotting tool is started, the RbnbPlotController class performs two functions:

1) it initiates the loading and storing of simulation results from the RBNB Serve, and 2) it

creates an instance of RbnbPlotControllerFrarae, which acts as the graphical user

interface for interacting with the user.

Data Extraction

The data extraction process is essentially the reverse of the data encoding process described

above. After getting the singleton RbnbReac_gr object, RbnbPlotController invokes its

getDataFromPbnb() method to start the data extraction process. Rbn_bReac_ffr calls
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Figure 6: Object interaction diagram for retrieving data from the RBNB.

getChannelList() which returns a array of all Channels currently on the RBNB.

RbnbReadMgr then iterates through each Channel to obtain a Map for the simulation

results. Identification of the correct simulation data is specified by a beginning and ending

TimeStamp. This TimeStamp value was created when the data was stored. Currently users

can only retrieve the first data set. In the future, we might create a mechanism to examine all

simulation sets currently stored on the RBNB. For the prototype, a single data set was

sufficient to build and test the system.

The list of Channel objects in the Map is obtained and iterated over so that each Charm.el 's

byte array can be retrieved. The String objects and primitive elements (int and double)

are extracted in exactly the same order as was used by the RbnbWriteMgr to encode the

data. During this "decoding" process, the component names and parameter values are

extracted and temporarily stored in the RbnbReadMgr. Storage of the data is in the same

form as described for the RbnbWriteMgr: componentNames Vector,

parameterNamesTable Hashtable, and paramValuesTable Hashtable. Once the data

has been extracted, the RbnbPlotController calls the RbnbReadMgr object to get the

componentNames Vector, the parameterNamesTable Hashtable, and

paramValuesTable nashtable. RbnbPlotController then adds the retrieved data to an

internal database which supports the operations of the RbnbPlotControllerFrame

graphical user interface.

Data Display

The RbnbPlotControllerFrame provides the user with a graphical user interface (GUI) with

which to select the engine model simulation results. The GUI is shown in Figure 7 (a). The

GUI is comprised of two List components. The left-hand List displays the name of each of

the engine components which were present in the engine simulation. The right-hand List

displays the name of the parameters to be graphed for the selected engine component. This

List allows multiple selections, allowing the user to select to graph any or all of the

component's parameters. For example, in Figure 7(a), the Temperature and

deltaTemperature parameters for MixVoll component have been selected.
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Components: Component Parameters to Graph
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Figure 7: (a) Plotting tool graphical user interface; (b) Plot Window

Selection of a parameter automatically displays a PlotWindow for that parameter (see Figure

7 (b)). Selection of the Temperature parameter for other components will cause their values

to be plotted in the same PlotWindow.

Summary

This report describes the research effort to demonstrate the integration of a data sharing

technology, Ring Buffered Network Bus, in development by Dryden Flight Research

Center, with an engine simulation application, the Java Gas Turbine Simulator, in

development at the University of Toledo under a grant from the Glenn Research Center.

The initial objectives of the project have been met. We have obtained and reviewed the

RBNB software and documentation and established a basic understanding of the system.

Furthermore, we have demonstrated the application of the RBNB to data sharing by

integrating the RBNB with the Java Gas Turbine Simulator so that simulation data

generated by the JGTS could be stored on the RBNB and later retrieved and displayed by

remote users using a Java Plotting tool.

This work required the investigation, design and development of a set of Java fnterfaces,

abstract classes and concrete classes, to define the interface between JGTS and RBNB. For

expediency these interfaces were designed based on current component object models in

only the JGTS. However, the design used is sufficiently general so that connections to other

engine simulation systems, such as NCP, can be made without re-factoring the system. This

was accomplished by the use of design patterns, such as the Singleton pattern, and advanced

object-oriented framework design techniques. As a result, it should be possible to "plug" in

new functionality without redesign. This should also limit effects from changes in the RBNB
software as it evolves.
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